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Abstract. Classical linear maps associated with quantum maps are investigated. It is
demonstrated that with the help of SU(n) coherent states, SU(n) tensors fulfilling nonlinear
identities can be constructed. Nonlinear maps which evolve like linear maps if initial conditions lie
on a manifold which is explicitly given are defined and the analogy with the Kolmogorov–Arnold–
Moser theorem is discussed. The problem of geometric quantization is also investigated and a
geometric relation between the analysed quantum and classical maps is found.

1. Introduction

The purpose of this paper is to construct and investigate nonlinear dissipative maps which for
some initial conditions evolve like linear maps. In this paper we shall study classical maps
generated by quantum maps. Let us thus consider the unitary one-step evolution of operators
Yi in the Heisenberg picture:

Yi(n + 1) = U †Yi(n)U (1)

U = exp(−iH) (2)

where H is constructed as a polynomial in operator Yi-elements of some finite-dimensional
Lie algebra a:

H =
∑

c
pq...r

ij ...k Y
p

i Y
q

j . . . Y r
k . (3)

A class of systems obtained for a = su(2) is the so-called quantum kicked top model,
investigated in connection with quantum-classical correspondence for classically chaotic
systems [1, 2]. Let us consider the concrete example of such a quantum map where
Yi = Ji ∈ su(2), i = 1, 2, 3:

U = U1U2 = exp

(
−i

k

2j + 1
J 2

1

)
exp(−ipJ3) = exp(−iH). (4)

More exactly, Ji are infinitesimal generators of rotations in the (2j + 1)-dimensional
representation of spin j , where J2 = (J1)

2 + (J2)
2 + (J3)

2 = j (j + 1)1, j = 0, 1
2 , 1, 3

2 , . . .

and 1 is the (2j + 1) × (2j + 1) identity matrix. In equation (4) k and p are parameters [1–3]
and we have performed for further convenience a cyclic permutation of components of J with
respect to the formula for U in [1].

The nonlinear equations of motion for components of J , equations (1) and (4),

J ′ = eipJ3 eiκJ 2
1 Je−iκJ 2

1 e−ipJ3 (5)
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result in
J ′

1 = J1Cp − J2Sp

J ′
2 = 1

2 (J2Cp + J1Sp + iJ3)e
i2κ(J1Cp−J2Sp+ 1

2 ) + h.c.

J ′
3 = 1

2i
(J2Cp + J1Sp + iJ3)e

i2κ(J1Cp−J2Sp+ 1
2 ) + h.c.

(6)

where κ = k
2j+1 , Cp ≡ cos(p), Sp ≡ sin(p) [1]. The most important features of the model

are the finite dimensionality of its Hilbert space and the capability of chaotic motion in the
classical limit. This model is well suited to study the transition between quantum dynamics
(which can be linearized due to the finite dimensionality of the corresponding Hilbert space [3])
and nonlinear classical dynamics by increasing to infinity the dimensionality of the quantum
system [1, 2].

In the particular case of the quantum kicked top, equation (4), the generators Ji are thus
represented by (2j + 1)× (2j + 1) complex matrices. The same is true for the elements of the
universal covering algebra generated by polynomials in Ji (as, for example, in equation (3)).
Hence we achieve in this way an embedding of the system in u(2j + 1) algebra (or, in fact
su(2j + 1) since the remaining generator of u(2j + 1) is proportional to the (2j + 1)× (2j + 1)
identity matrix and its evolution is trivial).

Extending the Heisenberg equations of motion to m generators Xi of su(2j + 1) algebra,
m = (2j + 1)2 − 1,

Xi(n + 1) = U †Xi(n)U (7)

it is possible to linearize equation (7) exactly:

Xi(n + 1) =
m∑
k=1

AikXk(n) (8)

where i = 1, . . . , m, with orthogonal matrix Aik , i.e. Aki = (A−1)ik . Moreover, H defined
by (4) belongs due to the Hausdorff–Baker–Campbell theorem to a subalgebra spanned by J3,
J 2

1 and all their commutators, i.e. H ∈ (J3, J
2
1 )j ⊂ u(2j + 1) [3].

We shall describe in the next section how isomorphic linear parameter dynamics can be
associated formally with operator dynamics (8):

ci(n + 1) =
m∑
k=1

Akick(n). (9)

This leads to the question of connection between quantum and classical maps, cf equations (8)
and (9), respectively, which we shall investigate in section 5 in the context of geometric
quantization [4].

Let us now consider for the sake of a simple example a linear map:

c1(n + 1) = c1(n) cosα + c2(n) sin α

c2(n + 1) = −c1(n) sin α + c2(n) cosα
(10)

which can be obtained from a quantum map involving the generator of the o(2) algebra (this
map is a special case of the map discussed in section 4, equation (25)).

Obviously, the map (10) has the o(2) invariant: (c1(n))
2 + (c2(n))

2. Let us perturb the
map (10):

c1(n + 1) = c1(n)[(1 − ε) + ε(c2
1(n) + c2

2(n))] cosα + c2(n) sin α

c2(n + 1) = −c1(n) sin α + c2(n) cosα.
(11)

The obtained map is nonlinear, yet for initial conditions fulfilling c2
1(0)+c

2
2(0) = 1 the dynamics

is linear (provided that the motion on the unit circle is stable). We shall demonstrate that the Lie
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algebraic operator formulation (7) provides the framework to construct more general nonlinear
dynamical systems, the dynamics of which is linear on some manifold, which will be referred
to as linear manifold L.

The paper is organized as follows. In section 2 we describe how parameter dynamics
can be induced by a quantum map acting in su(2j + 1) algebra. In section 3 properties of
SU(2j + 1) tensors obtained by computing averages of su(2j + 1) generators over SU(2j + 1)
coherent states [5, 6] are described. Applications to nonlinear maps are discussed in the next
section—nonlinear maps which evolve like linear maps for initial conditions on manifold L
which is explicitly given are constructed and results of numerical simulations are described.
In section 5 the problem of geometric quantization is investigated and a geometric relation
between the quantum map (4) and the corresponding classical map is found. In the last section
the results are compared with the Kolmogorov–Arnold–Moser (KAM) theorem [7–9].

2. Parameter dynamics induced by quantum maps

The extended operator equation of motion (7), operating in su(2j + 1) Lie algebra, yields the
possibility of defining a dual linear dynamics in parameter space [3, 10]. Let us consider a
unitary transformation of a linear combination of su(2j + 1) generators Xk:

m∑
k=1

ckX
′
k = U †

( m∑
k=1

ckXk

)
U. (12)

Since the parameters ck are arbitrary, equation (12) is equivalent to (7). In this picture operators
evolve and the parameters are fixed. It follows that the generators evolve according to (8) where
the matrix A is known. Alternatively, the parameters evolve while the operators are fixed:

m∑
k=1

c′
kXk = U †

( m∑
k=1

ckXk

)
U. (13)

Using a representation of generators orthogonal in the scalar product [3, 11]
1
2 Tr(XiXj ) = δij (14)

we obtain equation (9) describing evolution of the parameters:

c′
i = 1

2 Tr

(
U †

( m∑
k=1

ckXk

)
UXi

)
=

m∑
k=1

1
2 Tr(U †XkUXi)ck =

m∑
k=1

Akick. (15)

Since the matrix A is orthogonal, Aik = (Aki)
−1, the evolution equations (8) and (15)

differ in the time direction.

3. SU (n) coherent states and averages of SU (n) generators

We shall base our approach on methods described in [12] for SU(3) Perelomov coherent
states. To construct Perelomov states in the case of the SU(N) group we consider the complex
extension sl(n,C) of the Lie algebra su(n) spanned by the generators Sij [5]:

[Sij , Skl] = δkjSil − δilSkj

S
†
ij = Sji

and commuting operators Hi :

Hi = 1
2 (Sii − Si+1,i+1) i = 1, 2, . . . , n − 1
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represented irreducibly bym×m complex matrices acting in C
m. Let |µ〉 be the highest-weight

vector of the representation, i.e.

Sij |µ〉 = 0 i < j.

Then a coherent state is defined as

|γ〉 = ‖γ〉
〈γ||γ〉1/2

‖γ〉 = exp

( ∑
i>j

γij Sij

)
|µ〉.

It is easy to show that the normalized coherent state |γ〉 is thus obtained by acting on
the highest-weight vector by an unitary operator U representing some element of the group
SU(n).

In the canonical basis |i〉, i = 1, . . . , n in C
n where |i〉 is the column vector with one on

ith position and zeros elsewhere, |i〉 = 〈i|T, the generators are represented as Sij = |i〉〈j |, and
the highest-weight vector reads

|µ〉 =




1
0
0
...

0


 . (16)

We check that H1|µ〉 = 1, Hi |µ〉 = 0, i > 1 so the representation is degenerate.
It follows easily that

exp

( ∑
i>j

γij Sij

)
=




1 0 0 · · · 0
γ1 1 0 · · · 0
γ2 γn 1 · · · 0
· · · · · · · · · 1 0
γn−1 γ2n−3 γ3n−6 γ n(n−1)

2
1


 ≡ b−[γ] (17)

i.e. the element b− belongs to the subgroup of lower triangular matrices in SL(n,C) having unit
diagonal elements and is parametrized by n(n−1) complex numbers γ = [γ1, γ2, . . . , γ n(n−1)

2
],

which are linear combinations of γij (we assume parametrization of b− in terms of γ and hence
we do not need to know the explicit dependence of b− on γij ).

We can define the unnormalized coherent state as

‖γ〉 = b−[γ]|µ〉 =




1
γ1

γ2
...

γn−1


 (18)

so that the normalized coherent state reads

|γ〉 = 1√
1 + γ1γ

∗
1 + · · · + γn−1γ

∗
n−1

‖γ〉. (19)

Let us consider generatorsXi spanning the (J3, J
2
1 )

⊥
j space, i.e. the orthogonal complement

to u(n), n = 2j + 1, in the scalar product (14). We can obtain the so-called momentum
representation [13] of SU(2j + 1) tensor T α

i in this subspace in the form
∑

k〈γ|Xk|γ〉Xk

where we sum over all Xk ∈ (J3, J
2
1 )

⊥
j .
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We obtain, up to a normalization constant Nn,

T̂ α
i = PT α

i = Nn




0 γ ∗
1 0 γ ∗

3 · · · 0 γ ∗
n−1

γ1 0 γ1γ
∗
2 0 · · · γ1γ

∗
n−2 0

0 γ2γ
∗
1 0 γ2γ

∗
3 · · · 0 γ2γ

∗
n−1

γ3 0 γ3γ
∗
2 0 · · · γ3γ

∗
n−2 0

· · · · · · · · · · · · · · · · · · · · ·
0 γn−2γ

∗
1 0 γn−2γ

∗
3 · · · 0 γn−2γ

∗
n−1

γn−1 0 γn−1γ
∗
2 0 · · · γn−1γ

∗
n−2 0




(20)

where P denotes projection onto (J3, J
2
1 )

⊥
j and we have used the standard representation of

generators Ji with diagonal J3.

Theorem 1. Let SU(2j + 1) tensor T α
i be constructed in the following way: T α

i =∑
k Xk〈γ|Xk|γ〉 where averages 〈γ|Xk|γ〉 are computed over a (degenerate) representation

of SU(2j + 1) coherent states. Let T̂ α
i be the projection of T α

i onto (J3, J
2
1 )

⊥
j . Then the tensor

T̂ α
i fulfills the identity T̂ 3 = T̂ .

Proof. Let us consider the form (20). We check directly that the choice of the normalization
constant Nn

Nn = 1√
(1 + γ2γ

∗
2 + · · · + γn−2γ

∗
n−2)(γ1γ

∗
1 + · · · + γn−1γ

∗
n−1)

(21)

leads to the demanded property T̂ 3 = T̂ and hence the theorem follows. �
We should mention here that the assumption that the representation of coherent states

is degenerate is crucial because the theorem 1 is not valid for general representation. This
can be readily verified in the case of SU(3) coherent states using results of [12]. Moreover,
performing similar computations we arrive at an analogous result:

Ť
df= T̂ 2 ∈ (J3, J

2
1 )j . (22)

4. An example of an exactly linearizable map

4.1. Linear map

Let us consider a matrix M = ∑
k ckXk ∈ su(4):

M =




0 c1 − ic2 0 c3 − ic4

c1 + ic2 0 c5 − ic6 0
0 c5 + ic6 0 c7 − ic8

c3 + ic4 0 c7 + ic8 0


 (23)

which has the structure of tensor T̂ α
i , equation (20). It follows that M ∈ (J3, J

2
1 )

⊥
3
2
, i.e. M

belongs to the orthogonal complement of (J3, J
2
1 ) 3

2
—the algebra generated by J3, J

2
1 and all

their commutators—in u(4). Operators J1, J2, J3 are generators of o(3) algebra for j = 3
2 and

we have used the standard representation of generators Ji with J3 = diag( 3
2 ,

1
2 ,− 1

2 ,− 3
2 ).

Let us perform a unitary transformation: M → M ′ = U †MU , where we substitute
U = e−iαJ3 . We shall treat the transformation of M ′ as transformation of parameters
c1, c2, . . . , c8 with su(4) generators spanning (J3, J

2
1 )

⊥
3
2

unchanged (cf equation (13)):

M ′ = U †MU =
∑
k

c′
kXk. (24)
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This linear map c′ = Ac, c =[c1, c2, . . . , c8]T, where T denotes the transposition of a matrix,
is easily computed, cf equation (15):

c′
i = ci cos λα + cj sin λα

cj = −ci sin λα + cj cos λα
(25)

where λ = 1 for (i, j) = (1, 2), (5, 6), (7, 8) and λ = 3 for (i, j) = (3, 4).

4.2. Nonlinear map

Let us define N = M3 with M given by equation (23):

N = M3 =




0 d1 − id2 0 d3 − id4

d1 + id2 0 d5 − id6 0
0 d5 + id6 0 d7 − id8

d3 + id4 0 d7 + id8 0


 ∈ (J3, J

2
1 )

⊥
3
2
. (26)

N = ∑
k dkXk ∈ su(4) and the parameters of N are easily represented in terms of

parameters of M:

d1 = c1(c
2
1 + c2

2 + c2
3 + c2

4 + c2
5 + c2

6) + c3c7c5 + c4c8c5 − c3c8c6 + c4c7c6

d2 = c2(c
2
1 + c2

2 + c2
3 + c2

4 + c2
5 + c2

6) − c6c7c3 − c5c8c3 + c5c7c4 − c6c8c4

d3 = c3(c
2
1 + c2

2 + c2
3 + c2

4 + c2
7 + c2

8) + c1c5c7 − c2c6c7 − c1c6c8 − c2c5c8

d4 = c4(c
2
1 + c2

2 + c2
3 + c2

4 + c2
7 + c2

8) + c8c5c1 + c7c6c1 + c7c5c2 − c8c6c2

d5 = c5(c
2
1 + c2

2 + c2
5 + c2

6 + c2
7 + c2

8) − c2c3c8 + c1c3c7 + c2c4c7 + c1c4c8

d6 = c6(c
2
1 + c2

2 + c2
5 + c2

6 + c2
7 + c2

8) − c8c3c1 + c7c4c1 − c7c3c2 − c8c4c2

d7 = c7(c
2
3 + c2

4 + c2
5 + c2

6 + c2
7 + c2

8) − c2c6c3 + c2c5c4 + c1c6c4 + c2
4c7

d8 = c8(c
2
3 + c2

4 + c2
5 + c2

6 + c2
7 + c2

8) − c3c6c1 − c4c6c2 + c4c5c1 − c3c5c2.

(27)

Let us define another map N → N ′ = U †NU :

N ′ = U †NU =
∑
k

d ′
kXk. (28)

The corresponding linear map reads

d′ = Ad d = [d1, d2, d3, d4, d5, d6, d7, d8]T (29)

with matrix A the same as in equation (25).
The map N → N ′ = U †NU is isomorphic to the map M → M ′ = U †MU .

Indeed, N ′ = U †NU = U †M3U = (U †MU)(U †MU)(U †MU) = (M ′)3. It thus follows
that transformation of tensor N , a nonlinear representation of the tensor M , is induced by
transformation of the tensor M .

Let us now substitute c1 in the first of equations (25) byd1 = d1(c1, . . . , c8), equations (27),
to obtain a nonlinear map:

c′
1 = {ε[c1(c

2
1 + c2

2 + c2
3 + c2

4 + c2
5 + c2

6) + c3c7c5 + c4c8c5 − c3c8c6 + c4c7c6]

+(1 − ε)c1} cosα + c2 sin α

c′
2 = −c1 sin α + c2 cosα

c′
3 = c3 cos 3α + c4 sin 3α

c′
4 = −c3 sin 3α + c4 cos 3α

c′
5 = c5 cosα + c6 sin α

c′
6 = −c5 sin α + c6 cosα

c′
7 = c7 cosα + c8 sin α

c′
8 = −c7 sin α + c8 cosα

(30)
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i.e. for ε = 0 we recover the unperturbed map, while for ε = 1 variable c1 is substituted
by d1, cf equations (27). For initial condition [c1(0), c2(0), 0, 0, 0, 0, 0, 0]T the map (30) is
equivalent to the map (11).

The initial map (25) and the perturbation were so designed that equations for variables
c3, c4, . . . , c8 could be easily solved and the solutions can be substituted into the first two
equations (30) to yield a two-dimensional non-autonomous map.

To linearize the map (30) we identify vectors c and d. We thus put in equations (27)

d1 = c1, d2 = c2, . . . , d8 = c8. (31)

Let us substitute into the initial condition of equations (30), c0, a solution of
equations (27), (31). It follows that since the maps (25) and (29) are equivalent and they
have the same initial conditions the map (30) becomes a linear map.

To find non-zero solutions of equations (27) and (31) the theorem 1 is used. The solution
is M = T̂ , i.e. real parameters c1, c2, . . . , c8 are given by


0 c1 − ic2 0 c3 − ic4

c1 + ic2 0 c5 − ic6 0
0 c5 + ic6 0 c7 − ic8

c3 + ic4 0 c7 + ic8 0


 = 1√

(1 + γ2γ
∗
2 )(γ1γ

∗
1 + γ3γ

∗
3 )

×




0 γ ∗
1 0 γ ∗

3
γ1 0 γ1γ

∗
2 0

0 γ2γ
∗
1 0 γ2γ

∗
3

γ3 0 γ3γ
∗
2 0


 (32)

where γ1, γ2, γ3 are arbitrary complex numbers. If we set γ1 = r1eiβ1 , γ2 = r2eiβ2 and
γ3 = r3eiβ3 we obtain c1 + ic2 = λr1eiβ1 , c3 + ic4 = λr3eiβ3 , c5 + ic6 = λr1r2ei(β2−β1),

c7 + ic8 = λr2r3ei(β3−β2), λ = 1/
√
(1 + r2

2 )(r
2
1 + r2

3 ). This solution gives an explicit formula
for the linear manifold L.

4.3. Computational results

We have first performed computations with initial conditions on L. We shall perform
computations for γ1 = 1

2 eiπ/4, γ2 = eiπ/4 and γ3 = 1
2 eiπ/4, i.e. for the initial condition

c0 =
√

2
4 (1, 1,−1, 1, 1, 1, 1, 1).

Since the equations for c3, c4, c5, c6, c7, c8 are linear, equation (30), these variables stay
on the manifold L. We can thus look for another solution solving equations (27), (31) for c1, c2

only:

c1 = c1(c
2
1 + c2

2 + c2
3 + c2

4 + c2
5 + c2

6) + c3c7c5 + c4c8c5 − c3c8c6 + c4c7c6

c2 = c2(c
2
1 + c2

2 + c2
3 + c2

4 + c2
5 + c2

6) − c6c7c3 − c5c8c3 + c5c7c4 − c6c8c4
(33)

with other variables fixed on the linear manifold: −c3 = c4 = c5 = c6 = c7 = c8 =
√

2
4 . We

recover the known solution (c1, c2)
(1) =

√
2

4 (1, 1) and obtain two new solutions: (c1, c2)
(±) =√

2
4 (∓

√
5±1
2 ,∓

√
5±1
2 ).

There are thus three sets of initial conditions on the linear manifold: c
(1)
0 =

√
2

4 (1, 1,x0),

c
(±)
0 =

√
2

4 (∓
√

5±1
2 ,∓

√
5±1
2 ,x0) and x0 = (−1, 1, 1, 1, 1, 1). In the case of c

(1)
0 , c

(−)
0 and

cosα �= 0 the motion is unstable while for c
(+)
0 the motion is stable—the attractor A1 is thus a

small circle of radius
√

5−1
4 : A1 = (

√
5−1
4 cosβ,

√
5−1
4 sin β), β ∈ [0, 2π). There are two other

attractors, A2, to be described later, approximately at a distance r = 2 from the origin, and
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Figure 1. Attractors A1 and A2—solid curves, repellers R1 and R2—dotted curves; cosα = 0.17,
ε = 1.

also an attractor at infinity, A3. There are also three repellers: R1 = (
√

5+1
4 cosβ,

√
5+1
4 sin β),

R2 = ( 1
2 cosβ, 1

2 sin β) and R3 = (0, 0). The repellers and the attractor A1 lie on the linear
manifold. In figure 1 the attractors A1 and A2 and repellers R1, R2 and R3 are shown for
cosα = 0.17 and ε = 1.

We have also performed computations for more general initial conditions, c
(1)
0 (δ) =√

2
4 (1, 1,−1, 1, 1 + δ, 1, 1, 1), so that for δ = 0 we obtain the solution of equations (27)

and (31) in the form (32), i.e. c
(1)
0 (0) lies on L. The computations were performed for two sets

of control parameters: the angle of rotation α and the perturbation parameter ε—for ε = 0
the system is linear while for ε = 1 parameter c1 is substituted by d1 (cf equation (27)). In
the first case we have varied cosα while ε was fixed and equal to unity; in the second case ε

was varied and cosα was held fixed and equal to 0.17. In the case of initial condition c
(1)
0 (0)

the linear motion in the (c1, c2) plane is equivalent to rotations along a circle of diameter 0.5.
The initial condition was so chosen that the linear motion was unstable, so that the trajectory
after leaving the circle had to settle on one of the attractors. To investigate attractors on both
sides of the linear manifold c

(1)
0 (0) (the circle of diameter 0.5) the initial conditions c

(1)
0 (δ)

with δ = ±10−8 were used.
When the parameters are varied the attractor A1 is unchanged while the attractor A2

undergoes changes, some of which are described in tables 1 and 2.

5. Inverse problem of geometric quantization

We have demonstrated that linearized equations (8) factorize into dynamics in (J3, J
2
1 )

⊥
j and

(J3, J
2
1 )j [3]. Moreover, the dynamics in the subalgebra (J3, J

2
1 )j is induced by dynamics in

the subspace (J3, J
2
1 )

⊥
j since equations for generators Xi ∈ (J3, J

2
1 )j can be obtained from
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Table 1. ε = 1.

cosα δ = −10−8 δ = +10−8

0.17 A1 A2 (six small ovals)
0.192 A1 A2 (distorted two-band)
0.193 A1 A2 (distorted three-band)
0.194 A1 A2 (broad noisy band)
0.195 A1 A2 (thin distorted band)
0.196 A1 A2 (thin band)
0.199 A1 A2 (broad noisy distorted band)

Table 2. cosα = 0.17.

ε δ = −10−8 δ = +10−8

1 A1 A2 (six small ovals)
1.693 34 A1 A2 (complicated two-band)
1.70 A1 A2 (thin two-band)
1.71 A1 A2 (six small ovals)
1.73 A1 A2 (very noisy broad band)

dynamical equations for operators Xk ∈ (J3, J
2
1 )

⊥
j

Xi(n + 1) =
m∑

k=p+1

AikXk(n) (34)

and their commutation relations [3]. In equation (34) we have divided u(2j + 1) generators
Xi into two subspaces: {Xp+1, Xp+2, . . . , Xm} = (J3, J

2
1 )

⊥
j , {X0, X1, . . . , Xp} = (J3, J

2
1 )j ,

X0 = 1, where m = (2j + 1)2 − 1, p = Integer[ (2j+1)2

2 ].
It is now possible to write down dynamical equations for parameters corresponding to

generators Xi ∈ (J3, J
2
1 )

⊥
j :

ci(n + 1) =
m∑

k=p+1

Akick(n) (35)

using ideas described in section 2, or computing averages over SU(2j + 1) coherent states,

ck(n)
df= 〈γ|Xk(n)|γ〉 (both methods lead to equivalent equations which differ in the time

direction only since the matrix A is orthogonal, Aik = (Aki)
−1).

We face an important problem now if equivalence between the quantum equation (34) and
the classical one (35) is to be complete: how to derive dynamical equations for parameters
c1, . . . , cp from equation (35) only. This is the inverse problem of geometric quantization [4]:
we need additional geometric structure in classical space which would correspond to the Lie
algebraic structure of the quantum operators X1, X2, . . . , Xm.

To solve this problem let us put T̂ = ∑m
k=p+1 ckXk ∈ (J3, J

2
1 )

⊥
j as in equation (20),

where we have stripped T α
i of indices for simplicity (see also equation (23)). The map

U †T̂ U = T̂ ′ = ∑m
k=p+1 c

′
kXk defines the dynamics of parameters corresponding to generators

in (J3, J
2
1 )

⊥
j , cf equation (35). Let us define a new matrix Ť

df= T̂ 2. Since Ť =∑p

k=0 dkXk ∈ (J3, J
2
1 )j , cf equation (22), we obtain the map cp+1, . . . , cm → d0, d1, . . . , dp.

Moreover, U †Ť U = (U †T̂ U)(U †T̂ U) = (
∑m

k=p+1 c
′
kXk)

2 = ∑p

k=0 d
′
kXk . It follows that the

transformation U †Ť U = Ť ′ induces dynamics of new parameters dk isomorphic to dynamics
of su(2j + 1) generators in (J3, J

2
1 )j .
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For example, for j = 1 we put J = [λ7,−λ5, λ2] to obtain

(J3, J
2
1 )

⊥
j = {X5, X6, X7, X8} = {λ1, λ2, λ6, λ7}

(J3, J
2
1 )j = {X0} ∪ {X1, X2, X3} ∪ {X4}

= {1} ∪
{
λ4, λ5,

1

2
λ3 +

√
3

2
λ8,

}
∪

{√
3

2
λ3 − 1

2
λ8

}

where λ are Gell–Mann matrices [14]. The linearized equations of motion read[
Z

(N+1)
1

Z
(N+1)
2

]
=

[
Cp Sp

−Spe−i k3 Cpe−i k3

]
·
[
Z

(N)
1

Z
(N)
2

]
(36)

where Z1 = X5 + iX6, Z2 = X7 − iX8 and Z1 and Z2 commute [3]. Parameters z1 =
c5 + ic6 and z2 = c7 − ic8 evolve according to equation (36). Furthermore, T̂ = ∑8

i=5 ciXi ,

Ť
df= T̂ 2 = ∑4

i=0 diX and it follows that d0 = 2
3 (c

2
5 + c2

6 + c2
7 + c2

8) = −
√

3
4 d4 and

(d1, d2, d3) = (c5c7 − c6c8, c5c8 + c6c7,
1
2 (c

2
5 + c2

6 − c2
7 − c2

8)). Parameters d1, d2, d3

evolve exactly as the operators X1, X2, X3 while d0, d4 and X0, X4 are constants of motion.
The map (c5, c6, c7, c8) → (d1, d2, d3) is the Hopf map of the three-dimensional sphere
S3 onto the two-dimensional sphere S2. Introducing the symplectic form , = dp1 ∧
dq1 + dp2 ∧ dq2

df= dc5 ∧ dc6 + dc7 ∧ d(−c8) we obtain {di, dj } = −2
∑3

k=1 εijkdk ,
{di, d4} = 0 where εijk is the completely antisymmetric tensor and {, } is the Poisson bracket:
{f1, f2} = ∑

k(
∂f1

∂pk

∂f2

∂qk
− ∂f2

∂qk

∂f1

∂pk
) (see also exercises 20.4, 20.6 in [4] for similar computations).

Since X1, X2, X3 are generators of su(2) algebra it follows that the commutators i[Xj,Xk]
correspond to the Poisson brackets {dj , dk}, j, k = 1, 2, 3.

In the case of arbitrary j we obtain the same picture [15].

6. Discussion

We have constructed a class of ε-dependent classical mappings, arising from quantum maps,
which for ε = 0 are linear (hence integrable) while for ε �= 0 for some initial conditions they
evolve like linear maps and for other initial conditions their evolution is nonlinear and even
chaotic. This recalls the KAM theorem. The KAM theorem describes the fate of invariant
tori of an integrable Hamiltonian system subject to a Hamiltonian perturbation [7–9]. If a
perturbation is small enough then though some tori are destroyed the motion is confined to tori
for most initial data. Moreover, for growing perturbation more tori are destroyed, giving rise
to chaotic motion.

There are however several important differences. Most importantly, the maps in our case
are not in general area preserving since they have attractors and repellers. Furthermore, we
know the exact form of the linear manifold of the initial conditions on which the motion is
exactly linear (the motion on the manifold can be stable or unstable) and this linear manifold
persists for arbitrary ε.

Our results cast some light on the problem of geometric quantization—a geometric
relation between quantum maps (8) and classical maps (9) arising from quantum kicked top
dynamics [3], cf section 5, was found.

Analogous results can be obtained for other groups, e.g. SU(p, q) [15].
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[10] Gajdek M and Okniński A 1995 Dynamical systems: classical versus operator representation Z. Naukowe
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